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Abstract This review describes the first-principles calcula-
tion of chiroptical properties such as optical rotation, elec-
tronic and vibrational circular dichroism, and Raman optical
activity. Recent years have witnessed a flurry of activity in
this area, especially in the advancement of density-functional
and coupled cluster methods, with two ultimate goals: the elu-
cidation of the fundamental relationship between chiroptical
properties and detailed molecular structure, and the develop-
ment of a suite of computational tools for the assignment of
the absolute configurations of chiral molecules. The under-
lying theory and the basic principles of such calculations
are given for each property, and a number of representative
applications are discussed.

1 Introduction

Chiral molecules are characterized by a unique three-dimen-
sional handedness, and the resulting pairs of left- and right-
handed enantiomers often exhibit distinct chemical activities
when reacting within a chiral environment [1]. For example,
there are literally dozens of examples of chiral species whose
enantiomers produce dramatically differing odors, such as
the naturally occurring limonene (1) (see Fig. 1): while one
enantiomer smells of oranges, the odor of the other resembles
turpentine [2]. A more serious example, however, is the drug
thalidomide (2), which was prescribed to pregnant women in
Europe between 1957 and 1962 for morning sickness. The
drug was withdrawn soon thereafter when numerous cases
of birth defects were reported, and later studies of rodent
offspring indicated that one enantiomer of thalidomide was
found to produce fetal-tissue damage while the other had no
apparent effect. Unfortunately, both enantiomers are formed
in vivo in humans through rapid interconversion, such that
a non-racemic application of the two forms is not possible
[3]. Although the FDA never approved the drug for use in the
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U.S. in the 1960s, it did provide limited access to it begin-
ning in 1998 for the treatment of erythema nodosum leprosum
(ENL), a complication of Hansen’s disease (leprosy).

Enantiomeric pairs of chiral molecules also exhibit dis-
tinct responses to left- and right-circularly polarized light in
absorption, refraction, and scattering. These responses may
be used to determine the handedness (i.e., the “absolute con-
figuration”) of an enantiomerically pure sample, provided
sufficient details about the corresponding circular dichroism,
birefringence, or scattering intensity differences are known
a priori. Such analyses are vital to modern synthetic organic
chemistry, for example, where the laboratory synthesis of chi-
ral species such as natural product isolates requires careful
control over the absolute and relative configurations of ste-
reogenic centers. Although organic chemists routinely deter-
mine enantiomeric purity of such isolates by chiral chroma-
tography (GC/HPLC), determination of the absolute config-
urations of non-crystalline compounds frequently requires
asymmetric total synthesis, followed by comparison of the
measured chiroptical responses to those of the initial isolate.
If the given compound’s structure allows for a large number
of stereoisomers — and many natural products can give rise
to literally thousands of such species — the synthesis of the
desired enantiomer can require decades to complete.

Theory has an opportunity to play an important role in this
effort. As ab initio quantum chemical methods have matured
over the last several decades, so too has their ability to predict
accurately, reliably, and rapidly a variety of molecular prop-
erties. Numerous examples have been reported in the litera-
ture for which theoretical data have preceded, confirmed, and
even overturned experimental determinations of geometrical
structure, vibrational and UV/Vis spectra, thermochemistry,
NMR chemical shieldings, and spin–spin coupling constants
[4–6]. In the last 10–15 years, tremendous advances have also
been made in the extension of quantum chemical models to
chiroptical properties, with the goal of developing computa-
tional methods for assisting in the determination of the abso-
lute configurations of chiral species. Of equal importance,
however, is a more fundamental objective: obtaining a deeper
understanding of the very nature of optical activity. Although
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Fig. 1 Chiral molecules discussed in this review. Stereogenic centers are indicated by asterisks, where applicable. Structures 18, 20, and 21
contain stereogenic axes, and structure 9 does not contain an atom at its stereogenic center

empirical rules such as the octant rule have been widely used
by organic chemists for decades [7], they quickly fail outside
the limited spectrum of simple molecules for which they were
initially designed [8]. On the other hand, although advanced
theoretical models can be used as a convenient black box,
their value is greatly diminished if they do not also provide
useful insight into the physical and chemical processes they

represent [9]. Thus, much of the effort expended in model-
ing chiroptical properties has also focused on the inherent
relationship of such properties to molecular structure and
inter-/intra-molecular interactions.

This review summarizes the fundamental aspects of the-
oretical calculations of several types of chiroptical response
properties that have been particularly valuable to organic and
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biological chemistry: optical rotation, electronic and vibra-
tional circular dichroism, and Raman optical activity. For
each of these properties, we give a brief résumé of the under-
lying quantum mechanical principles, followed by a discus-
sion of their implementation within state-of-the-art quantum
chemical program packages and recent example applications.

We specifically focus on ab initio models, including Har-
tree-Fock and density-functional theory (DFT) [10], as well
as the more recent advances in high-level electron-correla-
tion methods, such as coupled cluster theory [11,12]. These
methods differ distinctly in their respective implementations,
and each has its own advantages and disadvantages. DFT and
its time-dependent variant (TD-DFT) have seen perhaps the
widest application to chiroptical properties in the last several
years, due to their effective balance of cost and accuracy.
The scaling of DFT with molecular size is relatively low —
comparable to its Hartree-Fock counterpart — and, thanks to
state-of-the-art integral-direct techniques employed in sev-
eral publicly available program packages, DFT calculations
on chiral molecules containing 20–30 non-hydrogen atoms
are now routine. In addition, compared to Hartree-Fock meth-
ods, which include essentially no electron correlation effects,
modern hybrid functionals offer significantly improved accu-
racy, comparable or often superior to low-order perturbation
theory methods such as MP2 [13,14].

On the other hand, a drawback of DFT for chiroptical
properties is their dependence on exchange-correlation func-
tionals that were not designed for such calculations. For
example, the popular “B3” exchange functional of Becke is
considered by some to be “semi-empirical” in that its three
parameters were obtained by a least-squares fit to experimen-
tal data (atomization energies, ionization potentials, proton
affinities, and atomic energies) for the G2 test set of mole-
cules [15]. Thus, while functionals such as B3LYP [15,16]
often do a superb job in thermochemical predictions, there is
no fundamental physical reason for them to perform as admi-
rably for more complicated properties such as optical rota-
tion, where the response of the density is the pivotal quantity.
Furthermore, fundamental deficiencies in even state-of-the-
art functionals such as self-interaction errors, lack of disper-
sion effects, and qualitatively incorrect descriptions of diffuse
electronic states are sometimes cause for skepticism regard-
ing DFT results. New functionals currently under develop-
ment may overcome such problems, but a truly universal
functional remains out of reach.

Wave-function-based methods such as coupled cluster
theory, on the other hand, are sometimes referred to as “con-
vergent” models in the sense that one may extend the atomic
orbital basis set and/or include higher levels of dynamic elec-
tron correlation to systematically approach the exact (Born–
Oppenheimer) solution. This provides a natural set of diag-
nostics for the wave function that can lend greater confidence
in the computed results. Unfortunately, the high-degree poly-
nomial scaling of such methods [O(N6) or worse] usually
precludes their routine application to molecules containing
more than 10–12 non-hydrogen atoms. This disadvantage
is under attack, however, with the on-going development

of reduced-scaling/locally-correlated coupled cluster meth-
ods [17–20], including new techniques that are applicable to
chiroptical properties [21].

Although this review endeavors to provide an up-to-date
perspective on modern ab initio methods for optical activ-
ity, it is far from comprehensive in its treatment of either the
underlying theory or experimental techniques for measuring
such properties. The indispensible text by Barron, “Molec-
ular Light Scattering and Optical Activity” [22], the second
edition of which has just been published, provides a much
wider perspective on this topic. In addition, older texts by
Caldwell and Eyring [23], Charney [24], and Mason [25]
offer excellent pedagogical overviews of the fundamental
theory. A number of excellent reviews focusing on specific
classes of chiroptical properties have also appeared in recent
years, including studies of optical rotation by Polavarapu [26]
and by Stephens et al. [27,28] reviews of vibrational circular
dichroism by Polavarapu [29], by Stephens and Devlin [30],
by Freedman et al. [31], and reviews of Raman optical activ-
ity calculations and measurements by Nafie [32] who also
reviews VCD and by Barron et al. [33]. Furthermore, al-
though we have chosen to limit our scope to natural (linear)
optical activity, i.e. the optical response of chiral molecules
to weak fields, we note that much effort has gone into theo-
retical descriptions of closely related magnetochiral [34–38]
and non-linear [39] spectroscopic methods, such as the well-
known techniques of magnetic circular dichroism [40,41]
and recently proposed chiral NMR [42].

2 Optical rotatory dispersion

Optical rotation (or circular birefringence) refers to the rota-
tion of the plane of linearly polarized light as it passes through
an enantiomerically pure sample of a chiral species. The mag-
nitude of this rotation is characteristic of the detailed molecu-
lar structure of the compound and varies with the wavelength
of the incident light (optical rotatory dispersion). This phe-
nomenon was first observed by Arago in 1811 and by Biot in
1812 in quartz crystals, and Biot’s later experiments estab-
lished that the same rotation could be observed in solutions
of camphor and turpentine. (For an excellent review of the
historical development of optical activity as well as its fun-
damental quantum mechanical principles, see [22].) Optical
rotation is now routinely measured in polarimetry experi-
ments and has become an essential tool of organic chemistry.

The quantum mechanical foundations of optical rotation
were first laid down more than 75 years ago by Rosenfeld [43],
who demonstrated, using time-dependent perturbation the-
ory, that the electric dipole moment of a chiral molecule in-
duced by a frequency-dependent electromagnetic field may
be written as [23]

µ̄ = αE + β
∂B

∂t
, (1)

where E and B represent the applied, time-dependent elec-
tric and magnetic field vectors. Theα tensor denotes the usual



230 T.D. Crawford

dipole-polarizability, e.g.,

αxy(ω) = 2

h̄

∑

n �=0

ωn0〈ψ0|µx |ψn〉〈ψn|µy |ψ0〉
ω2
n0 − ω2

, (2)

where µ = ∑
i qir i is the electric-dipole operator, ω is

the frequency of the incident radiation field, ψ0 denotes the
ground-state wave function, and the summation runs over all
electronically excited states,ψn, each with excitation energy,
ωn0. The key quantity developed by Rosenfeld is the analo-
gous β tensor,

βxy(ω) = −2

h̄
Im

∑

n�=0

ω〈ψ0|µx |ψn〉〈ψn|my |ψ0〉
ω2
n0 − ω2

, (3)

where m =
∑

i
qi

2mi
r i × pi is the magnetic dipole operator and

“Im” indicates that only the imaginary part of the expression
is retained.

The trace of β is related to the specific rotation [i.e., the
total rotation, normalized for path length (dm) and concentra-
tion (g/mL)], which is commonly denoted as [α]ω. Averaging
over all molecular orientations [23] (followed by consider-
able algebraic manipulation) leads to the following expres-
sion for [α]ω, in deg dm−1 (g/mL)−1:

[α]ω =
(
72.0 × 106

)
h̄2NAω

c2m2
eM

×
[

1

3
Tr(β)

]
(4)

where β and ω are given in atomic units, NA is Avogadro’s
number, c is the speed of light (m/s), me is the electron rest
mass (kg), and M is the molecular mass (amu).

Although the Rosenfeld expression forβ in Eq. 3 involves
summation over the molecular excited states, most quantum
chemical calculations of [α]ω avoid this approach in practice
by invoking a linear response formalism [44,45],

βxy(ω) = −Im〈〈µx;my〉〉ω, (5)

in which the perturbation of the ground-state wave function
by the external electric and magnetic fields is the central quan-
tity. This approach generally requires relatively straightfor-
ward solution of systems of coupled linear equations for the
perturbed wave functions, followed by direct calculation ofβ.

2.1 Hartree-Fock and DFT optical rotation calculations

In Hartree-Fock and DFT approaches, the frequency depen-
dence of the applied field implies the need for a time-depen-
dent formalism — time-dependent Hartree-Fock (TD-HF)
or the random phase approximation (RPA) [46,44] for the
former, and time-dependent DFT (TD-DFT) for the latter [47,
48]. In these approaches, the response function for βxy(ω)
may be written as

〈〈µx;my〉〉ω = µ+
x (� − ω�)−1my, (6)

where µx and my denote vectors of the electric-dipole and
magnetic-dipole operator components, respectively,

� =
(

A B
B A

)
(7)

and

� =
(

1 0
0 −1

)
, (8)

and the implied matrix dimensions include all single excita-
tions and de-excitations among the Hartree-Fock or Kohn-
Sham molecular orbitals. The elements of the submatrices A
and B are

Aaibj = (εa − εi)δij δab + 〈aj ||ib〉 (9)

and

Baibj = 〈ab||ij〉, (10)

where i and j (a and b) denote occupied (virtual) molecu-
lar orbitals, εi and εa are orbital energies, and 〈pq||rs〉 is an
antisymmetrized electron repulsion integral in Dirac’s nota-
tion. In the TD-DFT approach, the two-electron integrals nat-
urally include contributions from the exchange-correlation
potential employed [49–52]. In practice, the matrix inverse
appearing in Eq. 6 is not computed explicity, but instead a
system of linear equations is defined for the associated right-
hand perturbed wave function, e.g.,

(� − ω�)Zx = µx. (11)

This equation may be simplified for computations by expand-
ing the super-matrix expression into a pair of reduced-dimen-
sion matrix equations using A and B explicitly [44]. Thus, a
computation of the linear response function for Hartree-Fock
or DFT requires the following steps:

1. Solution of the SCF equations to obtain the initial HF or
KS molecular orbitals.

2. Construction of the A and B matrices using the appro-
priate forms of Eqs. 9 and 10. (This may be carried out
in an integral-direct manner, for example.)

3. Iterative solution of Eq. 11 for each Cartesian component
of µ̂ (or m̂) — a total of three perturbed wave function
equations.

The final tensor element is obtained by taking dot products of
Zα with mβ . The cost of such a calculation is comparable to
the solution of the coupled-perturbed Hartree-Fock or Kohn-
Sham equations required for a normal coordinate analysis.

The first Hartree-Fock calculations of optical rotation
were reported by Polavarapu in 1997 [53] using the “static-
limit” Rosenfeld tensor program developed in CADPAC by
Amos [54]. Two years later, the first density-functional-based
optical rotation calculations were reported in 1999 byYabana
and Bertsch within the local density approximation (LDA).
Cheeseman, Frisch, Devlin, and Stephens reported static-
limit DFT calculations of optical rotation in 2000 using hy-
brid functionals such as B3LYP [55], and in 2001 they
extended this work to include frequency dependence [56].

Several ab initio program packages now include optical
rotation calculations at the Hartree-Fock level [57–61], and
density-functional implementations, using both pure func-
tionals and hybrid Hartree-Fock exchange, are now pub-
licly available as well [58,59,62,61]. The most efficient
implementations of these models make use of integral direct



Ab Initio calculation of molecular chiroptical properties 231

techniques, in which the required two-electron integrals are
computed “on-the-fly” rather than precomputed and stored,
as well as “resolution of the identity” (RI) methods (for pure
functionals), in which certain classes of integrals are approx-
imated as products of integrals that are less expensive to
compute [63]. Both the direct and RI approaches make possi-
ble applications of TD-HF and TD-DFT optical rotations for
molecules containing up to several dozen non-hydrgen atoms
by reducing the disk-space and CPU-time requirements of
such calculations.

2.2 Coupled cluster optical rotation calculations

One of the most reliable quantum chemical approaches for
many molecular properties is coupled cluster theory [11,12],
a size-extensive model in which the electronic wave function
is constructed as an exponential expansion of Slater determi-
nants, viz.

|ψCC〉 = eT̂ |ψ0〉, (12)

where T̂ is a “cluster operator”, which formally generates
excited/substituted determinants from the reference determi-
nant, ψ0 (usually, but not necessarily a Hartree-Fock wave
function). The cluster operator must be truncated at a selected
level of excitation for practical calculations, e.g. the coupled
cluster singles and doubles (CCSD) approach is defined as
limiting T̂ to include only singly and doubly excited deter-
minants. The advantage of the exponential form of the wave
function is that the power-series expansion of exp(T̂ ) implic-
itly includes higher excitations beyond those for which T̂ is
truncated, and the total wave function for non-interacting sys-
tems may be written as a product of the wave functions for the
fragments. The coupled cluster energy is, however, non-vari-
ational, because it is determined as the reference expectation
value of a non-hermitian, similarity-transformed Hamilto-
nian, H̄ :

ECC = 〈ψ0|e−T̂ ĤeT̂ |ψ0〉 = 〈ψ0|H̄ |ψ0〉. (13)

This leads to distinct right- and left-hand wave functions:

〈ψ̃CC| = 〈ψ0|
(

1 + 	̂
)

e−T̂ , (14)

where 	̂ is a de-excitation cluster operator, analogous to T̂ .
A coupled cluster implementation of the Rosenfeld ten-

sor requires a time-dependent response approach, similar in
foundation to that of the TD-HF and TD-DFT methods de-
scribed above, but which must take into account the response
of both the left- and right-hand coupled cluster wave func-
tions [64–66]. This leads to the following second-quantized
expression for the linear response function:

〈〈µ; m〉〉ω = 1

2
Ĉ±ω

[
〈ψ0|	̂

[
µ̄, X̂ωm

]
|ψ0〉

+〈ψ0|
[
Ŷ ωm, µ̄

]
|ψ0〉

]
, (15)

where the overbar denotes similarity transformation of the
given operator [just as for the Hamiltonian in Eq. 13], and

the permutation operator Ĉ±ω simultaneously changes the
signs on the chosen field frequency and takes the complex
conjugate of the expression. The perturbed T̂ and 	̂ cluster
operators, which are given by X̂ωm and Ŷ ωm , respectively, are
computed by solving systems of linear equation, analogous
to Eq. 11, e.g.,
∑

j

〈ψi |(H̄ − ω)|ψj 〉〈ψj |X̂ωm|ψ0〉 = −〈ψi |m̄|ψ0〉, (16)

and
∑

j

〈ψ0|Ŷ ωm|ψj 〉〈ψj |(H̄ + ω)|ψi〉

= −〈ψ0|	̂
[
m̄, τ̂i

] |ψ0〉
−〈ψ0|	̂

[[
H̄ , X̂ωm

]
, τ̂i

]
|ψ0〉, (17)

where τ̂i represents an excitation operator that produces the
i-th excited Slater determinant from the reference ψ0. An
alternative expression for the linear response function may
be obtained by making use of the dependence of Ŷ ωm on X̂ωm
to obtain

〈〈µ; m〉〉ω = 1

2
Ĉ±ωP̂ (µ(−ω),m(ω))

×
[
〈ψ0|	̂

[
µ̄, X̂ωm

]
|ψ0〉

+1

2
〈ψ0|	̂

[[
H̄ , X̂ωµ

]
, X̂−ω

m

]
|ψ0〉

]
, (18)

where P̂ is a symmetric permutation operator. Thus, a compu-
tation of the coupled cluster linear response function for two
different operators, µ̂ and m̂, requires the following steps:

1. Solution of the ground-state coupled cluster T̂ and 	̂
amplitude equations. (These quantities are also required
for analytic energy gradients, for example.)

2. Solution of the perturbed wave functions, X̂ωm and X̂ωµ,
in Eq. 16 for each Cartesian component of the operators
at both positive and negative field frequencies — a total
of 12 sets of linear equations.

3. Construction of the linear response function in Eq. 18
using T̂ , 	̂, and the perturbed wave functions.

The overall cost of a coupled cluster linear response calcu-
lation is similar to that for NMR chemical shieldings, for
example. However, the need to solve for 12 perturbed wave
functions for each field frequency makes calculations of opti-
cal rotatory dispersion (ORD) particularly expensive.

Ruud et al. [50,67] reported the first CCSD level calcu-
lations in the DALTON package [68] in 2002, and Crawford
et al. [69,70] recently implemented coupled cluster optical
rotation in the PSI3 package [60]. Most recently, Pedersen et
al. [71]. have reported the first application of optical rotation
at the CC3 level of theory, which includes connected triple
excitations [72], again using a developmental version of the
DALTON package.
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2.3 Origin invariance

One subtle problem arising in calculations of the Rosenfeld
β tensor is that of origin dependence: in the formalism given
above for Hartree-Fock, DFT, and coupled cluster, a transla-
tion of the coordinate origin along a vector, a, leads to a shift
in the computed value of [α]ω, clearly an unphysical result.
This problem can be understood in terms of the response
functions above by first noting that the origin shift changes
the coordinate, linear momentum, and angular momentum
vectors as r′ = r − a, p′ = p, and r′ × p′ = r × p − a × p,
respectively. The corresponding linear-response tensor at the
new origin may then be written as,

〈〈r′; r′ × p′〉〉ω = 〈〈r; r × p〉〉ω − 〈〈r; a × p〉〉ω. (19)

The trace of the second term on the right-hand side of the
equation, which is the source of the origin dependence, may
be written explcitly in terms of the individual components of
r, p, and a as,

Tr〈〈r; a × p〉〉ω = ax
[〈〈rz;py〉〉ω − 〈〈ry;pz〉〉ω

]

+ay
[〈〈rx;pz〉〉ω − 〈〈rz;px〉〉ω

]

+az
[〈〈ry;px〉〉ω − 〈〈rx;py〉〉ω

]
. (20)

Thus, the variation of the optical rotation with a change of
origin is dependent on both the size of the shift and the asym-
metry of the 〈〈r; p〉〉ω response function. If, however, the
electronic structure model used to compute 〈〈r; p〉〉ω satisfies
the correponding equation-of-motion of the response func-
tion [44],

ω〈〈r; r〉〉ω = 〈ψ0|[r, r]|ψ0〉 + 〈〈r; [r, Ĥ ]〉〉ω, (21)

then the optical rotation becomes origin invariant in the limit
of a complete basis set because then

[r, Ĥ ] = ip. (22)

In this case, 〈〈r; p〉〉ω may be replaced with ω〈〈r; r〉〉ω in
Eq. 20, which becomes zero due to the symmetry of the lat-
ter. This is the case for Hartree-Fock and DFT, whose re-
sponse functions satisfy Eq. 21, but not for coupled cluster
theory [66,73].

For practical basis sets, one approach to overcoming the
origin-dependence problem is to incorporate directly into
the basis functions a magnetic-field-dependent phase factor,
leading to what are known as gauge-including atomic orbitals
(GIAOs) or London atomic orbitals (LAO’s), defined as [74,
75]

χν(B; Rν; r) = exp

(
− i

2
(B × Rν) · r

)
χ(0; Rν; r), (23)

where Rν is the coordinate of the nucleus on which the ν-th
basis function resides and χ(0; Rν; r) is the original (Gauss-
ian) basis function. GIAOs have seen wide application in
quantum chemistry in the last 10–15 years, especially in the
calculation of NMR chemical shieldings, where compara-
ble issues of origin invariance arise [76–78]. When GIA-
Os are employed, the response function 〈〈r; p〉〉ω appearing

in Eq. 20 is replaced naturally by 〈〈r; [r, H ]〉〉ω, which, by
Eq. 21, is equal to ω〈〈r; r〉〉ω [79,80]. Again, the symme-
try of the latter function forces Eq. 20 to zero, thus ensur-
ing origin invariance of the optical rotation, even for finite
basis sets. GIAO-based Hartree-Fock and DFT optical rota-
tion techniques are available in several program packages
[58,68].

The fact that Eq. 21 does not hold for methods like cou-
pled cluster theory [66,81] implies that GIAOs will not en-
sure origin invariance, even in the limit of a complete basis
set. However, as used recently by Grimme et al. [63] and by
Pedersen et al. [82] an alternative representation of the Ro-
senfeld tensor may be employed to circumvent this problem.
For exact wave functions,

Tr〈〈r; r × p〉〉ω = 1

ω
Tr〈〈p; r × p〉〉ω, (24)

according to Eq. 21. The trace on the right-hand side of
this equation is inherently origin independent because, if the
origin-shifted equivalent expression for Eq. 19 were con-
structed, the symmetric response function 〈〈p; p〉〉ω would
appear, forcing Eq. 20 to zero. However, a fundamental prob-
lem with this “velocity-gauge” representation of the response
function within coupled cluster theory is that it does not decay
to zero in the static limit as does its “length-gauge” coun-
terpart because of the appearance of 1/ω in Eq. 24, which
cancels the ω in the numerator of Eq. 4. Thus, Pedersen et al.
recommended shifting 〈〈p; r × p〉〉ω by its static-limit value,
〈〈p; r × p〉〉0 to account for this error. Although this requires
the solution of an additional set of six perturbed wave func-
tion equations (for a total of 18), the result is a well-behaved,
origin-invariant expression for the optical rotation that ap-
plies equally well to DFT and coupled cluster theory. We
note, however, that the origin invariance of the velocity-gauge
expression applies only to the trace of the corresponding
Rosenfeld tensor, not its individual components, and, again,
even in the limit of a complete basis set, the velocity- and
length-gauge expressions for the Rosenfeld tensor will not
give equivalent results within the truncated coupled cluster
approximation [66,81].

2.4 Applications

The last decade has witnessed tremendous activity in theo-
retical calculations of optical rotation, and we describe here a
number of particularly relevant results. For an excellent and
more complete review of recent optical rotation calculations,
as well as a discussion of both semiempirical and quantum
mechanical techniques, see Polavarapu [26] and Stephens
et al. [27,28].

The first systematic study of optical rotation by ab initio
methods was carried out in 1997 by Polavarapu using Har-
tree-Fock theory with small basis sets for the “static-limit”
Rosenfeld tensor (defined as the overlap of wave function
derivatives with respect to external electric and magnetic
fields [54]) without London orbitals [53,83,84]. At around
the same time, Kondru, Wipf, and Beratan applied this same
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approach to a number of natural products [85,86], making use
of van’t Hoff’s superposition principle that the total specific
rotation of a large molecule may be estimated as the sum of
the rotations of its component fragments. Using GIAO-based
Hartree-Fock 6-31G calculations, they determined the optical
rotation of the natural product hennoxazole A (3) [85]. They
divided the system into three subsystems of comparable size,
optimized the lowest-lying conformers of each stereoisomer
using a molecular mechanics approach (including CHCl3
solvent corrections), and Boltzmann-averaged the computed
optical rotations. The final estimated rotations agreed well
in both sign and magnitude with the measured rotations for
each of eight stereoisomers, and the best match with the mea-
sured [α]589 of the original natural product agreed with an
earlier assignment using asymmetric total synthesis. Ribe
et al. [87] carried out a comparable analysis for the ma-
rine natural product pitiamide A (4) 2 years later However,
Goldsmith et al. [88] recently reported a failure of van’t
Hoff’s superposition principle when applied to molecular
aggregates. Using DFT/B3LYP calculations of [α]589 for con-
formationally averaged monomeric and dimeric (R)-(−)-pan-
tolactone (5), they predicted a value of [α]589 for the monomer
of only −1 deg dm−1 (g/mL)−1 and for the dimer of −203
deg dm−1 (g/mL)−1.

We also note the effort by Kondru, Wipf, and Beratan to
establish a foundation for the long-elusive structure-property
relationships of optical rotation. They proposed [89] a Mul-
liken-like partitioning of the “static” optical rotation tensor
into atomic contributions [54]. This allows the visual inter-
pretation of each atom’s contribution to the total rotation.

In 2000, Cheeseman et al. [55] reported the first DFT
calculations of the static-limit optical rotation using GIAOs.
They applied this new technique to (S)-methyloxirane (6)
and (R,R)-dimethyloxirane (7) with a variety of large basis
sets, with and without diffuse functions and with polarization
functions up to g-type. They concluded that small basis sets
do not provide reliable results. A year later, they extended
this effort to include frequency dependence. In a systematic
analysis of 30 molecules with several basis sets, they found
that Hartree-Fock level optical rotations were generally not
reliable and gave much larger average absolute errors com-
pared to experiment — by a factor of three — as compared to
B3LYP rotations. In addition, they found that the inclusion of
a simple Lorenz solvent correction reduced the accuracy of
the calculations [56]. Several additional applications making
use of DFT for assignment of absolute configuration have
recently been reported [90,27,28].

Polavarapu used multi-wavelength Hartree-Fock and
DFT/ B3LYP calculations of optical rotation for the paradig-
matic chiral molecule (S)-bromochlorofluoromethane (8) [91]
using London orbitals and large basis sets for comparison
with earlier Raman optical activity analyses of its absolute
configuration [92]. He reported that the computed ORD in the
range of 589–365 nm compared well with the experimentally
determined curve for the (+) enantiomer [91]. Schreiner et al.
[93] synthesized an enantiomerically pure adamantane ana-
logue of bromochlorofluoromethane (9) — a pseudotetrahe-

dral structure that is fascinating in part because it contains no
atom at its stereogenic center. They succesfully assigned its
absolute configuration based on a combination of theoretical
predictions and experimental measurements.

Giorgio et al. [94] have recently recommended the use
of multi-wavelength Hartree-Fock- and DFT-level optical
rotation calculations, comparable to that used by Polavarapu
above, a means to determine the absolute configurations of
chiral species. They argue that, although such methods may
give significant errors relative to experiment at a single wave-
length, they will correctly reproduce the overall shape of the
Cotton effect in regions far from an absorption pole. They
demonstrated the usefulness of this approach for several mol-
ecules, including camphor (10), β-pinene (15), and Troger’s
base (16), among others.

However, this approach of computing ORD curves for
comparison to experiment fails when the chosen field fre-
quency, ω, approaches an excitation energy of the molecule,
which case the expression for the Rosenfeld tensor given in
Eq. 3 diverges, leading to a first-order pole structure in [α]ω
(the Cotton effect [24]). This, however, is a breakdown of
the underlying perturbation theory used to derive β, and, of
course, experimental measurements of [α] in absorbing re-
gions give only finite values. Norman et al. [95] recently
addressed this problem by introducing an empirical factor
into β to account for the finite lifetimes of the excited states.
This allowed them to carry out the first calculations of the
complete ORD curves for a number of systems using ori-
gin-invariant DFT calculations. Ultimately, a complete the-
oretical prediction of ORD curves using the approach of
Norman et al. will require direct calculation of excited-state
lifetimes.

Although conformational effects have been considered
by many of the above studies, the first systematic investiga-
tions of the impact of structural flexibility have been reported
by Wiberg and co-workers. In particular, they have inves-
tigated conformational averaging of optical rotation using
DFT-level calculations for a number of prototypical systems,
including substituted and unsubstituted butenes and butanes
[96–98]. For 3-chloro-1-butene (17), for example, which has
three important low-lying conformers that differ primarily
in the C=C−C−C dihedral angle, they reported dramatic
differences in [α]589, as determined by B3LYP calculations
using GIAOs [96]. They were able to compute a Boltzmann
average of the rotations for each conformer using G2- and
G3-level free energies, but the final value of the rotation
was still a factor of two larger than the experimental value.
For 3-chlorobutane, however, which differs from its 1-butene
counterpart only in its lack of a long wavelength π → π∗
excitation, they obtained good agreement with experiment
using the same approach [98]. In addition, Wiberg and co-
workers investigated the effect of the choice of basis set on
optical rotation using 30o twisted ethane as a test case. They
found that diffuse p-type functions on hydrogen atoms were
essential to correct descriptions of optical rotation, and that
the 6-311++G** split-valence basis sometimes failed due to
a lack of such functions [97].
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The impact of the solvent on optical rotation is well
known to be considerable for many systems, sometimes even
changing the sign of the observed rotation for a given wave-
length [99]. This problem has recently been addressed by
Stephens and co-workers and by Mennucci et al. [100] using
the polarizable continuum model (PCM) in conjunction with
density functional calculations to determine shifts in [α]589
among several solvents. Stephens et al. focused on 6,8-bicy-
clo[3.2.1]octane derivatives and reported a reduction of about
4 deg dm−1 (g/mL)−1 (out of ca. 15 deg dm−1 (g/mL)−1) in
the mean absolute deviation from experiment when solvent
effects were included in the model. Mennucci et al. con-
sidered a test set of seven rigid chiral molecules, includ-
ing α- (14) and β-pinene (15), camphor (10), and others,
in both polar and non-polar solvents. They found that inclu-
sion of electrostatic effects in the model were sufficient to
correctly describe optical rotation in several solvents, such
as cyclohexane, acetone, methanol, and acetonitrile, while
for CCl4, benzene, and chloroform, this approach was
insufficient.

In 2002, Ruud and Helgaker [50] reported the first
coupled-cluster calculations of optical rotation. Using
CCSD-level response theory, they reported [α]589 values for
hydrogen peroxide as a function of the H−O−O−H dihe-
dral angle, demonstrating its substantial dependence on the
molecular conformation. The following year, Ruud et al. [67]
reported a more systematic study of 15 molecules at the
CCSD and CC2 [101] levels of theory and found that, for
nearly all of the molecules considered, B3LYP and CCSD
optical rotations performed equally well. The only exception
was the larger molecule, (1S,4S)-(−)-norbornenone (11), for
which CCSD was found to underestimate the experimen-
tal value of −1,146 deg dm−1 (g/mL)−1 by more than 35%.
B3LYP, on the other hand, overestimated the experimental re-
sult by only 6%. The underlying reason for this discrepancy
has yet to be determined.

In 2004, Tam et al. [69] reported an independent imple-
mentation of CCSD-level optical rotation and recently applied
this technique [70], using the origin-independent, velocity-
gauge approach of Pedersen et al. [82] to the σ -helicene, (P)-
(+)-[4]triangulane (trispiro[2.0.0.2.1.1] nonane) (18), a rigid
helical structure consisting of four fused cyclopropane rings.
This molecule was synthesized in enantiomerically pure form
in 1999 by de Meijere et al. [102,103] who also measured
very large specific rotations — ranging from 192.6 deg dm−1

(g/mL)1 at 589 nm to more than 600 deg dm−1(g/mL)1 at
365 nm — even though the molecule contains no long-wave-
length chromophore (see Fig. 2). CCSD optical rotations were
found to compare superbly (to an average of only 1%) with the
experimental results across the entire measured ORD curve.
B3LYP and CC2 calculations produced qualitatively correct
results, but both overestimated the rotations (by up to 16%
for DFT and 8% for CC2). However, these results are not nec-
essarily representative and, indeed, may be somewhat provi-
dential given that factors such as solvation, temperature, and
zero-point vibration have not been accounted for.

The largest coupled cluster optical rotation calculations to
date were reported by Pedersen et al. [82] at the CC2 level of
theory on 3,4-methylenedioxymethamphetamine (MDMA,
also known as the drug “ecstasy”, 19), which contains 29
atoms (14 non-hydrogen).These large-scale calculations were
facilitated by a Cholesky integral decomposition technique
in which the two-electron integrals, which are vast in number
for large molecules, are approximated as products of a small
number of small-dimension vectors [104,105]. This leads to
considerable savings in the computation time (ca. a factor of
ten) of response properties such as optical rotation.

In spite of these advances, it is not yet understood what
level of theory is necessary to obtain “the right answer
for the right reason” for optical rotation, and many of the
above successes rely implicitly on fortuitous cancellation
of errors (e.g., limited basis sets, lack of explicit solvation,
vibrational averaging, etc.) This point is well illustrated by
methyloxirane (also known as propylene oxide, 6). Owing
to its small size, this molecule is an ideal test case for
ab initio models of optical rotation, and it has proved
a substantial challenge. Vaccaro and co-workers recently
carried out the first quantitative gas-phase measurements
of optical rotation using their newly developed technique
of cavity ring-down polarimetry (CRDP) [106,107], For
(S)-methyloxirane, they measured a value of [α] at 355 nm
to be +10.2 deg dm−1 (g/mL)−1, significantly different than
the value reported by Kumata et al. at 589 nm of −18.7
deg dm−1 (g/mL)−1 in CCl4 (Fig. 3).

Although recent studies show that, with appropriate basis
sets, B3LYP optical rotations for methyloxirane agree rea-
sonably well with both experimental values of [α]355 and
[α]589 [69,108], coupled cluster methods fail to produce a
positive rotation at 355 nm, regardless of basis set [69]. Al-
though one might be tempted to conclude that DFT provides
superior results for this system, the agreement between DFT
and experiment is likely to be fortuitious in this case. In par-
ticular, Tam, Russ, and Crawford have shown that, unlike
coupled cluster methods, which reproduce the lowest-lying
excitation energy of methyloxirane of 7.15 eV (174.1 nm) to
within 0.05 eV, B3LYP methods underestimate this value by
0.5–0.6 eV, a result typical of TD-DFT for diffuse Rydberg
states [69]. As a result, B3LYP predicts a much earlier on-
set of the corresponding Cotton pole in the optical rotation
(cf. Eq. 3) than CCSD, leading to positive rotations at longer
wavelengths than if DFT reproduced the excitation energy
correctly. On the other hand, the disagreement between cou-
pled cluster optical rotations and experiment persist, even
when triple excitations are included in the ansatz [71]. A
possible explanation for the discrepancy between theory and
experiment was recently offered by Ruud and Zanasi [109]
who found that zero-point vibrational motion [110] (esti-
mated at the B3LYP level of theory) led to a positive shift
of 48.1 deg dm−1 (g/mL)−1at 355 nm [109]. Such results beg
the question of the general importance of vibrational effects
for obtaining the right answer for the right reason, and only
continued systematic studies will answer it.
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Fig. 2 Theoretical (B3LYP, CC2, and CCSD with the aug-cc-pVDZ basis set) and experimental optical rotatory dispersion curves for (P)-(+)-
[4]triangulane (18). The aug-cc-pVDZ basis set was used for the theoretical curves. Theoretical data were taken from Ref. [70] and experimental
data from Ref. [102]

Fig. 3 Theoretical optical rotatory dispersion curves for (S)-methyloxirane (shown on the left). The positions marked with an “X” are the measured
experimental rotations in the gas-phase (+10.2 deg dm−1 (g/mL)−1, 355 nm, [106]) and in solvent (CCl4, −18.7 deg dm−1 (g/mL)−1, 589 nm, [99]).
Theoretical data were taken from Ref. [69]

3 Electronic circular dichroism spectra

Electronic circular dichroism (ECD) spectra are derived from
the differential absorption of left- and right-circularly polar-
ized light by a chiral sample. The ECD scalar rotational
strength of a given electronic transition, Rn0, is the dot prod-
uct of the transition electric- and magnetic-dipole vectors,
viz.

Rn0 = Im {〈ψ0|µ|ψn〉 · 〈ψn|m|ψ0〉} . (25)

Thus, the theory underlying electronic circular dichroism
spectra is closely related to that described earlier for optical
rotation, and the determination of the rotational strength re-
quires first the calculation of the excited-state wave functions
and transition energies, followed by construction of either
the individual transition moments or the analogous transi-
tion strengths.

Although much of the recent effort expended towards the
ab initio computation of chiroptical properties has focused on
optical rotation, ECD spectra can actually offer more infor-

mation regarding the relationship between the details of the
molecular structure and its corresponding optical activity.
ECD rotational strengths provide information about the struc-
ture in the vicinity of each absorbing chromophore in the mol-
ecule, as opposed to the single, composite property provided
by optical rotation measurements. In this sense, ECD can
sometimes offer a more valuable probe of absolute config-
uration than ORD. (However, it should be noted that many
important chiral systems — including many natural prod-
ucts — do not lend themselves to convenient ECD analy-
sis because they lack accessible chromophores.) Regardless,
measurements of ECD spectra are performed less routinely
by organic chemists than optical rotation, primarily because
the experimental apparatus for the latter is much simpler to
use and costs nearly an order of magnitude less to obtain.
For overviews of the earliest computations of ECD spectra,
including a discussion of the long-standing empirical and
semi-empirical rules used to predict the signs of CD rota-
tory strengths, see the classic review by Hansen and Bouman
[111] as well as the more recent contribution by Rauk [112].
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3.1 Hartree-Fock and DFT ECD rotational strengths

Excited states are accessible within TD-HF/RPA [46,44] or
TD-DFT [47,48] by diagonalization of the � matrix appear-
ing in Eq. 6 with the metric �:

�Z = ω�Z, (26)

where, again, the implied dimensions of the equation include
all single excitations, X, and de-excitations, Y . In practice,
the dimensions of the equation may be halved by inserting
the definitions of �, adding and substracting the resulting
pair of matrix equations, and rearranging to obtain the non-
Hermitian eigenvalue equation,

(A − B)(A + B)(X + Y )n = ω2
n(X + Y )n, (27)

whereωn is the excitation energy andX+Y is the correspond-
ing eigenvector. Finally, the desired transition moments may
be obtained as the dot product of this eigenvector with the
electric- or magnetic-dipole integrals:

〈ψ0|µx |ψn〉 = µ+
x (X + Y )n, (28)

and

〈ψn|mx |ψ0〉 = (X + Y )+n mx. (29)

Equivalently, Eq. 27 may be subjected to a transformation to
produce an Hermitian eigenvalue equation such that the left-
and right-hand eigenvectors become simple adjoints of one
another [44]. A related, but slightly simpler approach may be
obtained using configuration interaction singles (CIS) [113]
(also known as theTamm-Dancoff approximation [114–117]),
in which only the A submatrix from � in Eq. 26 is re-
tained [118]:

AXn = ωnXn. (30)

Thus, the calculation of Hartree-Fock or DFT ECD rotational
strengths requires the following additional steps beyond the
initial calculation of the molecular orbitals:

1. Construction of the A and B matrices using the appro-
priate forms of Eqs. 9 and 10 (or just A for CIS-related
methods).

2. Solution of the eigenvalue problem in Eq. 27 or Eq. 30
for each excited-state of interest.

3. Evaluation of the dot product in either Eq. 28 or 29 for
each Cartesian component of the operator to obtain the
required transition moment.

The final rotational strength is obtained as the dot product of
the final transition moments, and thus requires little compu-
tational effort beyond the determination of the excited-state
eigenvectors. ECD spectral simulations at the Hartree-Fock
and DFT levels of theory have been implemented in several
program packages [58,59,62,68].

A major of advantage of TD-HF, CIS, and TD-DFT meth-
ods is their relative simplicity and computational efficiency.
They are easily applied to excited states of molecules
containing 20–30 non-hydrogen atoms. The primary disad-
vantage of TD-HF/RPA and CIS approaches is their lack of
dynamic electron correlation effects, and, as a result, they
often significantly overestimate excitation energies of

closed-shell organic molecules [119]. TD-DFT methods of-
fer substantial improvement over TD-HF and CIS and can
often predict excitation energies to within 0.5 eV for well-
localized states dominated by single-excitations. On the other
hand, they are incapable of describing charge-transfer states
without inclusion of exact Hartree-Fock exchange [120,121],
and they can dramatically underestimate excitation energies
of diffuse, Rydberg states due to self-interaction errors [122].
Although one may compensate for the latter errors using var-
ious asymptotic corrections [123], such an approach may
concomitantly produce inferior excited state properties and
transition moments [124].

As for optical rotation, the spectre of origin-invariance
again rears its ugly head in ECD rotational strength cal-
culations, and, for incomplete basis sets, the above length-
gauge representation of Rn0 suffers from arbitrary origin
dependence. Bak et al. [79] developed a GIAO-based imple-
mentations for both TD-HF/RPA theory and the related mul-
ticonfigurational RPA (MC-RPA) approach that avoid this
problem in the same manner described earlier for optical
rotation. More recently, Pecul et al. [125] reported the first
GIAO-based DFT calculations of ECD spectra.Alternatively,
as was described earlier for optical rotation, origin invariance
of ECD rotational strengths may be achieved using a velocity-
gauge representation for the electric-dipole operator, leading
to the following expression for Rn0,

Rn0 = 1

ωn0
Re [〈ψ0|p|ψn〉 · 〈ψn|m|ψ0〉] . (31)

Most modern implementations of ECD spectra utilize
the latter approach, which becomes equivalent to its length-
gauge counterpart in the infinite-basis-set limit. However,
as noted by Pecul et al. [125] the basis-set convergence of
the velocity-gauge formulation appears to be slower than its
length-gauge counterpart, even when GIAOs are not used in
the latter.

Some of the earliest ab initio ECD calculations include
those of Rauk, who applied truncated CI techniques to several
small disulfides for comparison to previously reported semi-
empirical calculations [126]. Shortly thereafter, Hansen and
Bouman [127] applied an RPA-based (velocity-gauge) ap-
proach to trans-cyclooctene (TCO) (20) and 3-methylcycl-
opentene. They found that, although both molecules contain
a central ethylene chromophore, qualitatively correct spec-
tral assignments required simulation of the entire molecu-
lar structure rather than more convenient model systems.
In the early 1990s, Peyerimhoff, Grimme, and co-workers
reported a series of CI-based studies comparing theoretical
and experimental rotational strengths for molecules such as
substituted oxiranes, thiiranes, and cyclophanes [128–131].
Soon thereafter, the first density functional implementation
of ECD rotational strengths was reported in 1996 by Grim-
me [132], who applied the DFT/CIS method (similar to that
described above) in the length gauge to (M)-4,5-dimethylph-
enanthrene (21) and (R)-(+)-camphor (10) using the Turbo-
mole package [59]. Later, Grimme and co-workers applied
both the velocity-gauge TD-DFT approach and the length-
gauge DFT/CIS approach to a series of large molecules,
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including a number of cyclophane derivatives and helicenes,
as well as camphor (10), norcamphor (12), and fenchone
(13), and found reasonable agreement with experimental CD
spectra [118,133]. Furche et al. [134] later reported large-
scale DFT ECD calculations for a series of [n]-helicenes
up to n = 12, as well as derivatives of hexahelicene. In
2002, Autschbach and co-workers developed an implemen-
tation of TD-DFT for ECD spectra within the ADF package
[62,135], using both velocity- and length-gauge rotational
strengths. They found that standard gradient corrected func-
tionals produce the correct CD intensity difference, but, as is
to be expected from TD-DFT, excitation energies tend to be
underestimated, especially for Rydberg and charge-transfer
states. Autschbach et al. [136] have also recently applied TD-
DFT ECD simulations to cobalt and rhenium transition metal
complexes, including solvent contiuum model corrections for
the transition energies. [137] have very recently considered
the influence of vibronic coupling on the ECD spectrum of
dimethyloxirane (7), and solvent effects were included in re-
cent DFT ECD spectral simulations by Pecul et al. [138]
using the PCM.

Diedrich and Grimme [139] recently carried out a system-
atic comparison of the abilities of various ab initio methods
for predicting ECD rotational strengths in a series of model
systems, including H2S2 and twisted ethylene, and several
“real-life” cases, such as camphor (10) and norcamphor (12).
They considered a number of theoretical methods, including
TD-DFT (with various functionals), as well as CC2 [101],
multireference perturbation theory [140], and DFT/MRCI
[141], using both length- and velocity-gauge expressions for
the rotational strengths. They found systematically better
performance for the DFT/MRCI and CC2 methods, though,
among the standard functionals, B3LYP gave the best results.

In a particularly important predictive application [142],
Stephens et al. [143] recently used DFT calculations of both
optical rotation and electronic CD to assign the absolute
configuration of a newly synthesized barrelenophane (22),
whose enantiomers had been separated by chiral chroma-
tography, but whose absolute configuration had not been
previously assigned [142]. Using B3LYP/6-31G* structural
optimizations of three important conformers, they generated
Boltzmann averages of both [α]589 optical rotations and CD
rotational strengths for comparison to the experimental data.
Both optical rotation and CD agreed on the absolute con-
figuration, perhaps lending greater confidence in the final
assignment. We note, however, that the theoretical underpin-
nings of ECD and ORD are closely coupled (as indicated
by the above discussion), and a given theoretical model may
fail for both properties, thus limiting the predictive value of
combined ECD/ORD simluations for assignments of abso-
lute configuration in general.

3.2 ECD rotational strengths via coupled cluster theory

Coupled cluster theory offers a route to modeling electronic
circular dichroism through its equation-of-motion (EOM-
CC) [144] and linear response [64] variants in which excited

states are approximated as eigenfunctions of the similarity-
transformed Hamiltonian appearing in Eq. 13:

e−T̂ ĤeT̂ R̂n|ψ0〉 = H̄ R̂n|ψ0〉 = EnR̂n|ψ0〉, (32)

where R̂n is a cluster operator (analogous to T̂ ) for the n-th
excited state. Just as for the ground-state wave function, the
non-Hermitian nature of the similarity-transformed Hamil-
tonian leads to a left-hand eigenvalue problem that is distinct
from its right-hand counterpart, but with the same eigen-
values,

〈ψ0|L̂nH̄ = 〈ψ0|L̂nEn, (33)

where L̂n is a de-excitation cluster operator and the excited-
state counterpart of R̂n. The left- and right-hand excited state
wave functions form a biorthogonal set,

〈Lm|Rn〉 ≡ 〈ψ0|L̂mR̂n|ψ0〉 = δmn. (34)

One method of defining the product of transition moments
appearing in Eq. 25 is as the residue of the corresponding lin-
ear response function [45],

Rn0 = lim
ω→ωn0

(ω − ωn0)Im〈〈µ; m〉〉ω. (35)

Given coupled cluster left- and right-hand wave functions
for the n-th excited state, the rotational strength may be com-
puted as [64,145]

Rn0 = 1

2

(
T̃ nµ · T nm +

[
T̃ nm · T nµ

]∗)
, (36)

where the right-hand wave function “transition moments” are
defined as, for example,

T̃ nµ = 〈ψ0|	̂
[
µ̄, R̂n

]
|ψ0〉

+〈ψ0|	̂
[[
H̄ , X̂ωµ

]
, R̂n

]
|ψ0〉, (37)

and their left-hand counterparts as,

T nµ = 〈ψ0|
[
L̂n, µ̄

]
|ψ0〉, (38)

where 	̂ is the same as that given for the left-hand ground-
state wave function in Eq. 14. Thus, in this formulation, eval-
uation of the coupled cluster rotational strength of a given
transition also requires the determination of a correspond-
ing perturbed ground-state wave function, X̂ωµ. Alternatively,
one may choose to exclude the perturbed wave functions from
Eq. 37, leading to a more efficient implementation. Although
for small molecules this approximation makes little numeri-
cal difference, the resulting rotational strengths are not size-
consistent [144].

Very few applications of coupled cluster theory to the
determination of ECD rotational strengths have been reported
thus far, and only the DALTON [68] and PSI3 [60] packages
currently have this capability. Pedersen et al. [146] reported
the first such calculations at the CCSD level in 1999. They
explicitly considered both gauge and origin invariance in the
scalar rotational strength and the rotational strength tensor,
the latter of which provides CD intensity of oriented sam-
ples [147]. They applied this new technology to the twisted
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ethylene chromophore of the popular TCO test case (20) and
found that, contrary to conventional wisdom, the velocity-
gauge expression for the rotational strength did not show
slower basis-set convergence characteristics than its length-
gauge counterpart. Pedersen and Koch [148] later extended
this work to the ECD spectrum of the full molecule, and they
suggested a slightly modified interpretation of the experi-
mental spectrum.

4 Vibrational circular dichroism spectra

Like its ECD counterpart, vibrational circular dichroism
(VCD) refers to the differential absorption intensities of left-
and right-circularly polarized light by chiral molecules, but
in this case, resulting in vibrational rather than electronic
transitions. VCD provides even more information than either
optical rotation or ECD regarding the relationship between
molecular structure and optical activity owing to the fact that
VCD rotational strengths may be measured even for mol-
ecules lacking a long-wavelength chromophore. However,
experimental measurements of such spectra are carried out
less often than their ORD and ECD counterparts due to the
cost of the VCD apparatus and the high level of expertise
required for its use.

Just as the oscillator strengths and integrated absorption
intensities of simple vibrational absorption (infrared) spectra
are related to the squares of electric-dipole transition mo-
ments [22],

Dn
vv′ = 〈�nv|µ̂|�nv′ 〉 · 〈�nv′ |µ̂|�nv〉, (39)

the corresponding rotational strengths of VCD spectra are re-
lated to the dot product of the electric-dipole transition mo-
ment and the magnetic-dipole transition moment,

Rnvv′ = Im
{〈�nv|µ̂|�nv′ 〉 · 〈�nv′ |m̂|�nv〉

}
, (40)

where n denotes the electronic state, v and v′ denote vibra-
tional states, and |�nv〉 and |�nv′ 〉 denote initial and final
vibronic states, respectively.

We may compute the electric-dipole vibrational transi-
tion moment appearing in Eqs. 39 and 40 beginning from the
Born-Oppenheimer approximation, in which we assume that
the total vibronic wave function, �nv(r,R), may be written
as a product of an electronic wave function, ψn(r; R) and a
vibrational wave function, χnv(R), where r and R denote the
collective electronic and nuclear coordinates, respectively.
Then the electric-dipole transition matrix element may be
written as

〈�nv(r,R)|µ̂|�nv′(r,R)〉
= 〈χnv(R)|〈ψn(r; R)|µ̂|ψn(r; R)〉|χnv′(R)〉
= 〈χnv|〈µ̂〉n|χnv′ 〉 (41)

where 〈µ̂〉n denotes the expectation value of the electric-
dipole operator in then-th Born-Oppenheimer electronic state.
The dependence of the 〈µ̂〉n on the nuclear coordinates is usu-
ally approximated by the first term of its Taylor expansion

about a reference geometry R0 (i.e., the electrical harmonic
approximation):

〈µ̂〉n ≈ 〈µ̂〉0 +
∑

α

(
∂〈µ̂〉n
∂Rα

)

0

(Rα − R0
α), (42)

where the subscript 0 indicates that the given quantity is
evaluated at the reference geometry. The dipole-moment
derivatives may be easily computed using analytic gradient
techniques, and the final expressions vary depending on the
level of theory employed [149]. The total electric-dipole tran-
sition matrix element then becomes

〈�nv|µ̂|�nv′ 〉 =
∑

α

(
∂〈µ̂〉n
∂Rα

)

0

〈χnv|(Rα − R0
α)|χnv′ 〉.

(43)

The vibrational wave functions, χnv , are usually taken to be
harmonic oscillator functions (i.e., the mechanical harmonic
approximation), which subsequently leads to relatively sim-
ple programmable equations in terms of the normal vibra-
tional modes [150].

Unfortunately, the same approach fails for the magnetic-
dipole vibrational transition moments appearing in Eq. 40
due to the fact that the electronic contribution to this transi-
tion moment vanishes:

〈ψn(r; R)|m̂elec|ψn(r; R)〉

= −1

2

nelec∑

i

〈ψn(r; R)|r i × pi |ψn(r; R)〉 = 0. (44)

Because m is a time-odd operator, its expectation value must
be zero for closed-shell (real) Born-Oppenheimer electronic
wave functions [151].

In his pioneering paper on VCD in 1985 [152], Stephens
showed how one can overcome this problem by introducing
first-order non-adiabatic corrections to the Born-Oppenhei-
mer wave function and subsequently evaluating these cor-
rections as the leading terms of Taylor expansions of the
adiabatic wave functions in the nuclear positions and an exter-
nal magnetic field. This leads to an expression of the mag-
netic-dipole vibrational transition moment in terms of the
overlap between wave function derivatives, viz. [152]

〈�nv|(m̂elec
)β |�nv′ 〉

= −2h̄ωvv′
∑

α

〈(
∂ψn

∂Rα

)

0

∣∣∣∣

(
∂ψn

∂Bβ

)

0

〉
×

〈χnv|(Rα − R0
α)|χnv′ 〉, (45)

where ω is the angular frequency of the vibrational tran-
sition, Bβ denotes a particular Cartesian component of a
“false” external magnetic field, and we have supressed the
explicit dependence of the wave functions on r and R for
notational simplicity. Again, the matrix element of the dis-
placement coordinate, Rα −R0

α is easily evaluated assuming
harmonic oscillator functions, as for the electric-dipole tran-
sition moment.Thus, the electronic contribution to the elusive
magnetic-dipole vibrational transition moment requires com-
putation of the derivatives of the wave function with respect
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to the nuclear coordinates — a derivative that is also implic-
itly required for the corresponding electric-dipole transition
moment — and with respect to an external magnetic field.

An alternative perspective was offered by Buckingham et
al. [153,154] who preferred to consider a Taylor expansion of
the electronic contributions to the time-odd magnetic-dipole
operator in odd powers of the nuclear velocities, e.g.

m =
∑

α

(
∂m

∂Ṙα

)

0

(Ṙα − Ṙ0
α)

+
∑

αβ

(
∂2m

∂Ṙα∂Rβ

)
(Ṙα − Ṙ0

α)(Rβ − R0
β)+ · · · ,

(46)

where the dot indicates derivative with respect to time. This
leads to an expression for the vibrational transition moment,

〈�nv|(m̂elec)β |�nv′ 〉

= 〈χnv|Ṙ|χnv′ 〉 · ∂(m̂
elec)β

∂Ṙ

= 2h̄ 〈χnv|Ṙ|χnv′ 〉 · Im

〈(
∂ψn

∂R

)

0

∣∣∣∣

(
∂ψn

∂Bβ

)

0

〉
, (47)

that is equivalent to Eq. 45. The advantage of this approach is
primarily conceptual: the expansion of the magnetic-dipole
operator in terms of nuclear velocities allows a relatively
simple physical interpretation of VCD rotational strengths in
terms of induced, infinitesimal electronic currents near the
nuclei.

The Born-Oppenheimer separation of electronic and
vibrational wave functions allows for the evaluation of VCD
rotational strengths via separate calculations of the vibra-
tional transition moments appearing in Eq. 40. Thus, to en-
force origin invariance of the total VCD rotational strength,
one must ensure that the individual vibrational transition mo-
ments are themselves origin independent. While the electric-
dipole transition moment is trivially origin invariant for the
length-gauge representation, this is not the case for the mag-
netic-dipole transition moment. We note in passing that a
simple velocity-gauge transformation without extension be-
yond the Born-Oppenheimer approximation of the electric-
dipole operator would, in fact, lead to a vanishing rotational
strength because, like the magnetic-dipole operator, the linear
momentum operator is time-odd, ergo,

〈ψn(r; R)|p̂|ψn(r; R)〉 = 0. (48)

Thus, in order for ab initio computations of VCD spectra to
achieve origin invariance, one must adopt a formulation that
enforces this property directly for the magnetic-dipole oper-
ator itself, perhaps through the use of GIAOs [75] or other
methods (vide infra) [155].

4.1 Ab initio implementation of VCD spectra

The tremendous advances in analytic derivative methods over
the last several decades have made possible the ab initio cal-
culation of VCD rotational strengths. At the Hartree-Fock

and DFT levels, for example, the overlap of wave function
derivatives appearing in Eq. 45 simplifies to
〈(
∂ψn

∂Rα

)

0

∣∣∣∣

(
∂ψn

∂Bβ

)

0

〉
=

occ∑

i

〈(
∂φi

∂Rα

)

0

∣∣∣∣

(
∂φi

∂Bβ

)

0

〉
, (49)

where φi denotes the i-th occupied Hartree-Fock or Kohn-
Sham molecular orbital. The derivatives of the molecular
orbitals are routinely computed by means of the correspond-
ing coupled-perturbed Hartree-Fock (CPHF) or Kohn-Sham
(CPKS) equations. The precise form of these equations de-
pends on the nature of the perturbation and may be obtained
by differentiation of the appropriate variational (Brillouin)
condition with respect to the perturbation:

(A ± B)U x = Zx, (50)

where the matrices A and B are the same as those defined
earlier in Eqs. 9 and 10. The positive combination, A + B,
is known as the “electric Hessian” and is obtained for real
perturbations, such as nuclear coordinates or external elec-
tric fields, while A − B (the “magnetic Hessian”) results for
pure imaginary perturbations [156]. The components of the
U vector represent the derivatives of the molecular orbital
coefficients, which are expanded as linear combinations of
the unperturbed coefficients, e.g. [149],

∂Ciν

∂x
=

∑

p

Ux
piC

p
ν . (51)

The form of the perturbation-dependent term, Zx , varies
depending on the nature of the perturbation as well as whether
the atomic orbital (AO) basis functions depend explicitly on
the perturbation. For electric or magnetic fields without field-
dependent AO’s, Zx simplifies to electric or magnetic dipole
integrals, for example.

Hartree-Fock and DFT calculations of VCD rotational
strengths therefore require several steps:

1. Evaluation of the harmonic force field and correspond-
ing normal coordinates for the given optimized geometry.
This step implicitly requires the solutions of the CPHF/
CPKS equations for nuclear perturbations, Rα .

2. Evaluation of the derivatives of the electric-dipole mo-
ment, followed by their transformation into the normal
coordinate basis for the construction of the electric-dipole
transition moments in Eq. 43. (These quantities are also
required for conventional infrared absorption spectra, as
is apparent from Eq. 39.)

3. Solution of the CPHF/CPKS equations for magnetic field
perturbations,Bβ , to obtain the MO derivatives, ∂φi/∂Bβ .

4. Construction of the magnetic-dipole transition moments
in Eq. 45 as overlaps of the MO derivatives, followed by
their transformation into the normal coordinate basis.

The final rotational strengths in Eq. 40 are then computed as
simple dot products of the electric- and magnetic-dipole tran-
sition moments. The most computationally intensive step is
the evaluation of the harmonic force field itself due to the need
to compute analytic first- and second-derivative integrals for
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each perturbation, as well as the solution of the CPHF/CPKS
equations for nuclear perturbations. Thus, the additional steps
required for simulation of VCD spectra within Hartree-Fock
theory or DFT are relatively inexpensive.

For coupled cluster methods, the overlap expression
appearing in Eq. 45 must be evaluated with appropriate con-
sideration of the differing left- and right-hand coupled cluster
wave functions in Eqs. 12 and 14. Although no coupled clus-
ter implementations of VCD spectra have yet been reported
in the literature, the foundations for such calculations have
already been laid. Derivatives of T̂ and 	̂with respect to nu-
clear coordinates are required to evaluate the harmonic force
field [157–159], and analogous derivatives with respect to
an external magnetic field are required for NMR chemical
shielding tensors [160]. For methods such as CCSD, these
derivatives (along with associated orbital relaxation terms)
may be used directly to evaluate Eq. 45, while for methods
without well-defined wave functions, such as CC2 [101],
CCSD(T) [161,162], CCSDT-n [163], CC3 [72], etc., re-
sponse or equation-of-motion approaches may be necessary.

4.2 Applications

The first implementation of VCD rotational strengths using
ab initio methods was reported in 1986 at the Hartree-Fock
level by Lowe et al. [164,165] who evaluated the molecular
orbital derivatives in Eq. 49 using numerical differentiation
techniques. Soon thereafter,Amos, Handy, Jalkanen, and Ste-
phens implemented the more efficient analytic derivative ap-
proach described above within the CADPAC program suite
[57] and applied it to isotopomers of ethylene oxide (oxira-
ne) [166]. Morokuma and Sugeta [167] reported an inde-
pendent implementation using analytic derivatives for the
nuclear perturbations and numerical differentiation for the
magnetic-field perturbations shortly thereafter. Amos et al.
[168] reported the first VCD calculations including electron
correlation effects in 1990 using second-order perturbation
theory (MP2) for the harmonic force field and electric-dipole
derivative contributions, but retaining the SCF-level descrip-
tion of the magnetic-dipole transition moment. In their test
calculations on (R)-methylthiirane, they reported that elec-
tron correlation effects were vital to obtain the correct signs
for the rotational strengths in all regions of the spectrum.
Stephens et al. [169,170] used the same approach for trans-
2,3-dideuteriooxirane, methyloxirane (6), and deutero-cyclo-
propanes with somewhat larger basis sets and found that the
VCD rotational strengths compared well with experiment
for almost all transitions, apart from Fermi resonances in
the C−H stretching regions. They noted that “errors in rota-
tional strengths arising from the absence of electron correla-
tion...are not insignificant [169].”

Although origin invariance was not achieved for many
of the early calculations of ab initio VCD spectra, Stephens
suggested the use of a “distributed origin” (DO) approach
whereby each atomic contribution to the total magnetic-dipole
transition moment [referred to as the atomic axial tensor

(AAT)] is assigned its own origin, namely the position of
the given nucleus [155]. The resulting expressions allow for
the computation of the AATs in terms of their electric-dipole
counterparts [known as atomic polar tensors (APTs)], written
in the velocity-gauge [171]. This approach guarantees over-
all origin independence of the computed rotation strengths,
and was used in a number of applications, including those
by Stephens et al. [169,170] described above. (The DO ap-
proach was also utilized by Yang and Rauk [172] within the
vibrational coupling theory of Nafie) Bak et al. [173,174]
have criticised this approach, however, on the grounds that
the basis-set convergence behavior of the AATs with DOs
is somewhat slower than for the APTs. To overcome this
problem while still maintaining origin invariance, Bak et al.
reported the first use of GIAOs for VCD calculations at the
SCF and MCSCF levels of theory in 1993, and reported tests
of the method’s basis-set convergence properties soon there-
after.

In 1994, Stephens et al. [175] reported the first simula-
tions of VCD spectra using DFT. They computed the
harmonic force field andAPTs using a variety of density func-
tionals (LDA, BLYP, B3LYP), and approximated the AATs
using the DFT-based APTs coupled to SCF-level AATs in the
common origin. Based on a series of test calculations for 4-
methyl-2-oxetanone (23), 6,8-dioxabicyclo[3.2.1]octane (24),
and camphor (10), they concluded that B3LYP provides com-
parable accuracy to the MP2 methods mentioned above, but
with considerably improved disk-storage requirements.

The current state-of-the-art in ab initio VCD rotational
strength calculations was reported by Cheeseman et al. [176]
in 1996 with the development of the first GIAO-based DFT
codes. In an analysis of their detailed calculations on trans-
2,3-dideuteriooxirane, they attributed the remaining few dis-
crepancies between theory and experiment to deficiencies
in the latter. Since this new approach was first made avail-
able in the Gaussian programs [58], the vast majority of
VCD calculations reported in the literature have made use
of GIAO-DFT methodology. Excellent overviews of a num-
ber of important applications have been recently given by
Stephens and Devlin [30] and by Freedman et al. [31] Apart
from the need to consider higher levels of electron correla-
tion in the electronic structure model, most of the remaining
discrepancies between theory and experiment can likely be
attributed to anharmonicity [177] (especially in higher-fre-
quency C−H stretching regions) and solvent effects. (Recent
work by Cappelli et al. [178] on PCM-based VCD simula-
tions of 3-butyn-2-ol have highlighted the latter). In addition,
recent work by Polavarapu et al. [179,180] has indicated the
need for improved quantitative accuracy in VCD rotational
strengths for the determination of conformer populations.

5 Raman optical activity

The phenomenon of Raman optical activity (ROA) arises due
to the weak differential scattering of left- and right-circu-
larly polarized light by chiral molecules. Although initially
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hampered by instrumentation obstacles, ROA has blossomed
in recent years as a potentially potent technique for structure
determination in a wide variety of chiral molecules, rang-
ing from small systems such as methyloxirane, to biological
species as large as viruses [181,182]. Barron et al. [33] have
recently offered a concise and readable review of the history
and theoretical foundations of ROA, as well as a number of
its most recent applications.

The first complete theoretical description of ROA was
given in 1971 by Barron and Buckingham [183], who intro-
duced the unitless circular intensity difference (CID),

� = (IR − IL)/(IR + IL), (52)

where IR and IL are the individual scattering intensities
[184]. The first confirmed experimental observation of ROA
was reported Barron et al. [185] 2 years later. Barron and
Buckingham demonstrated that the numerator and denom-
inator in the above expression may be related to molecu-
lar parameters by consideration of the field vectors radiated
by oscillating electric-dipole, magnetic-dipole, and electric-
quadrupole moments, leading to expressions for the Rayleigh
optical scattering CIDs of a number of relevant experimental
scattering geometries, such as depolarized scattering,

�z(90o) = 12[β(G′)2 − (1/3)β(A)2]

6cβ(α)2
, (53)

and in-phase dual circular polarization (DCP) backscattering,

�DCPI(180o) = 48[β(G′)2 + (1/3)β(A)2]

12cβ(α)2
. (54)

These equations require orientationally averaged expressions
for the isotropic and anisotropic tensor-component products
of the electric-dipole polarizability, ααβ (Eq. 4), the electric-
dipole/magnetic-dipole polarizability,G′

αβ (which is identical
to the Rosenfeld β tensor of Eq. 3), and the electric-dipole/
electric-quadrupole polarizability, Aαβγ , viz.,

β(α)2 = 1

2

(
3ααβααβ − ααααββ

)
, (55)

β(G′)2 = 1

2

(
3ααβG

′
αβ − αααG

′
ββ

)
, (56)

and

β(A)2 = 1

2
ω0ααβεαγ δAγ δβ. (57)

The subscript Greek letters in these equations refer to carte-
sian components, εαγ δ is the third-order Levi-Civita tensor,
ω0 is the incident laser frequency, and the Einstein summa-
tion convention is implied.

In vibrational Raman scattering, the electronic polariz-
ability tensors above must be replaced by the corresponding
vibrational transition moments, e.g., 〈χnv|ααβ(Rγ−R0

γ )|χnv′ 〉.
The necessary polarizabilities may then be expanded in Tay-
lor series about the equilibrium geometry, and the Placzek
approximation assumes that only the linear contribution in
this expansion contributes significantly [186]. This leads to
final expressions for the above tensor products in terms of

derivatives of the polarizabilities with respect to normal coor-
dinates, Qvv′ , e.g. [80,22],

〈χnv|ααβ |χnv′ 〉〈χnv′ |ααβ |χnv〉
≈ 1

2ωvv′

(
∂ααβ

∂Qvv′

)

0

(
∂ααβ

∂Qvv′

)

0

. (58)

Thus, ab initio computation of ROA CIDs requires differ-
entiation of the polarizability tensors, α, G′, and A, with
respect to the nuclear coordinates. Although analytic deriva-
tive methods exist for the electric dipole polarizability [187,
188], no such procedures have yet been reported for deriva-
tives of the G′ tensor, and thus nearly all ROA calculations
reported in the literature make use of numerical differentia-
tion techniques. (See the text by Polavarapu [29] for a detailed
assessment of the fundamental equations of ROA.)

Origin dependence of ROA CIDs arises both from the
appearance of the magnetic-dipole operator in the definition
of the G′ tensor (see Eq. 3) and from the definition of the
electric quadrupole tensor, A [22]. However, unlike optical
rotation and ECD rotational strengths, a velocity-gauge rep-
resentation of the electric-dipole operator cannot circumvent
this problem because of the appearance of off-diagonal com-
ponents of G′ in Eq. 56. [Note that for optical rotation and
ECD, only the trace of G′ is needed, as illustrated in Eq. 20.]
Thus, the only option is to adopt a method for which ori-
gin invariance is independently enforced such that the origin
dependence of each component of G′ correctly cancels that
of the components of the A tensor. This can be accomplished
using GIAOs for Hartree-Fock and DFT, whose response
functions then satisfy Eq. 21, but not for coupled cluster meth-
ods, even in the limit of a complete basis set [66,81].

5.1 Ab initio calculation of Raman optical activity

Ab initio ROA calculations have been implemented in a num-
ber of publicly available packages at the Hartree-Fock and
DFT levels of theory [61,58,59]. The first such calculations
of ROA CIDs were reported in 1989 and 1990 by Polava-
rapu et al. [189–191] using Hartree-Fock theory and small
basis sets (6-31G, 6-31G*, and 6-31G**) for a number of
small molecules, including H2O2, D2O2, methyloxirane (6),
and methylthiirane. The necessary polarizability derivatives
(using the static-field limit formulation by Amos [54]) were
evaluated numerically by finite displacements of the molecu-
lar geometry around equilibrium, with the coordinate origin
chosen arbitrarily either at the center of charge or mass, a
small distance away along a coordinate axis, or at an atom.
Later, these same researchers extended this work by making
use of MP2-level harmonic force fields, combined with Har-
tree-Fock-level calculations of the polarizabilities derivatives
(again evaluated by finite difference techniques) [192].

The first origin-independent and frequency-dependent
ROA CID calculations were reported in 1994 by Helgaker
et al. [80] using GIAOs at the Hartree-Fock level of theory.
Using methyloxirane (6) as a test case, they found significant
discrepancies between theory and experiment and concluded
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that electron correlation effects and anharmonicity correc-
tions would be necessary to resolve them. They also noted
that, similarly to other chiroptical properties such as opti-
cal rotation, large basis sets including diffuse functions are
required to obtain converged results. This latter point was
emphasized recently by Pecul and Rizzo [193] who noted that
the aug-cc-pVXZ and d-aug-cc-pVXZ basis sets of Dunning
et al. [194–196] yielded significantly improved results. Zuber
and Hug [197] recently reported that diffuse higher-angular-
momentum functions for the hydrogen atoms are vital for
qualitatively correct ROA CIDs, and that the aug-cc-pVXZ
basis sets of Dunning et al. [198,199] yielded significant
improvements over Pople-type split valence basis sets. (This
point is similar to that made by Wiberg et al. [97] in a careful
study of basis-set effects on optical rotation in ethane in 2004,
as discussed earlier.) In addition, they developed a small basis
set without polarization functions that performs essentially
as well as the aug-cc-pVDZ basis set for considerably less
computational cost.

Bouř has recently introduced an alternative approach to
ROA spectra that avoids the linear response approach to the
polarizability tensors in favor of a truncated summation of,
for example, Eq. 3, known as the sum-over-states (SOS) ap-
proach [200,201]. For the special cases of Hartree-Fock and
DFT theory, Bouř demonstrated that the final equations could
be approximated well using only singly excited determinants
for the excited states (which also leads to simplified excitation
energies), and that analytic expressions for the polarizability
derviatives with respect to nuclear coordinates were straight-
forward. In addition, he enforced origin independence of the
G′ tensor through a distributed origin approach, comparable
to that used by Stephens [155] in the evaluation of VCD rota-
tional strengths. Test calculations onα-pinene (14) and model
peptides demonstrated that the SOS approach provides rea-
sonable accuracy, but at substantially reduced computational
cost relative to linear-response schemes.

Ruud et al. [202] recently reported the first DFT-level
implementation of ROA CIDs using GIAOs, and numerical
differentiation of the relevant frequency-dependent polariz-
abilites. Their work indicated that, in spite of earlier sugges-
tions that correlation effects might be significant, differences
between Hartree-Fock and DFT ROA CIDs are relatively
small, though for accurate quantitative calculations of the
detailed ROA spectrum, DFT represents the current state of
the art. In addition, they compared their results to those from
Bouř’s [200,201] approach above, and concluded that the
SOS method is a “fast and inexpensive tool for quickly pro-
viding theoretical CIDs that may help in the first assignment
of the experimental VROA spectra.”

Just as for other chiroptical properties, solvent and/or con-
formational effects can be significant for ROA CIDs. Sev-
eral recent studies have addressed one or both of these prob-
lems for a number of biologically relevant examples, includ-
ing small dipeptides and carbohydrates [197,203–206]. For
example, Bouř et al. recently examined the ROA spectra
of the L-alanyl-L-alanine zwitterionic dipeptide for which
a number of low-lying conformers exist whose relative ener-

gies depend greatly on the use of solvent corrections (e.g.,
the Onsager model). Using DFT harmonic force fields cou-
pled with Hartree-Fock-level polarizability derivatives, they
reported ROA spectra that allowed assignment of most of the
experimentally observed vibrational bands [203].

One of the difficulties of ab initio evaluation of ROA CIDs
(as for many other properties) is analyzing the computed
results in terms of individual wave function or atomic con-
tributions. Although first-principles models are often capa-
ble of producing very accurate results, they also can provide
far too much data to allow for deeper insight into the most
important contributions to the CID of a particular vibrational
mode. In an effort to overcome this problem, Hug [207] re-
cently introduced a scheme for visualizing ROA contribu-
tions to vibrational modes via an atomic decomposition [the
Raman atomic contribution pattern (ACP)] of the polarizabil-
ity derivatives. These techniques were subsequently applied
to an ROA CID analysis of the σ -helicene [4]triangulane (18)
[208] and, more recently, to the assignment of the absolute
configurations of individual stereogenic centers in Galaxo-
lide© (1,3,4,6,7,8- hexahydro-4,6,6,7,8,8-hexamethylindeno
[5,6-c]pyran, 25) [209].

6 Summary and prospectus

Thanks in part to advances in response theories and analytic
derivative techniques, the last several years have witnessed
tremendous progress in ab initio methods for computing chir-
optical properties, including optical rotation, ECD,VCD, and
ROA. State-of-the-art implementations of TD-DFT and cou-
pled cluster approaches for optical rotation, in particular, have
been applied to chiral molecules containing thirty atoms or
more. DFT treatments of VCD rotational strengths have been
invaluable for a number of definitive assignments of abso-
lute configuration, and the emerging techniques for modeling
ROA spectra will likely prove to be at least equally valuable.

Much work remains to be done, however, before ab initio
models can provide the accuracy and reliability needed for
deeper insight into chiroptical response. It is not yet known,
for example, what level of rigor is required in terms of basis
set completeness or the treatment of dynamic electron cor-
relation to reproduce even gas-phase optical rotation mea-
surements reliably to within 10 deg dm−1 (g/mL)−1 (a level
of accuracy that may well be essential for the assignment
of absolute configuration for complicated structures). Zero-
point vibrational effects are rarely considered, but may be
necessary even to obtain the correct sign of optical rotation
or ECD rotational strengths for some systems [110]. For con-
formationally flexible molecules, a common approach is to
use a Boltzmann averaging procedure of the property of inter-
est for a few relevant minima, but for many molecules, the
energetic barriers separating these minima are likely to be
too small to discount vibrational tunnelling effects. Finally,
solvent perturbations on chiroptical properties are known to
be large in many cases, and although PCM calculations have
offered improved agreement between theory and experiment,
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explicit solvation modeling may eventually be needed to ac-
count for the numerous remaining discrepancies.

Nevertheless, as we continue to learn about the funda-
mental nature of optical activity through the interplay of the-
oretical modeling and new experimental technology, there is
good reason to remain optimistic that the promise of a suite of
computational tools for assisting in the determination of the
absolute configurations of chiral molecules will soon become
a reality.
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202. Ruud K, Helgaker T, Bouř P (2002) J Phys Chem A 106:7448
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